Refine Your Search

Topic

Author

Search Results

Technical Paper

Durability of Extruded Electrically Heated Catalysts

1995-02-01
950404
Extruded metal honeycombs are used as electrically heated catalysts (EHCs). The durability requirements of this application make demands on high surface area, thin cross-section metal honeycombs. Significant durability improvements over previous extruded metal honeycomb EHCs have been achieved by material and package design changes. The product redesign was supported by finite element models and extensive testing. The redesigned EHC has passed severe laboratory and field testing. The tests include electrical cycling to 1000°C/1600 cycles, hot vibration to 60g/900°C and demanding on-vehicle exposure. Excellent durability of the extruded metal honeycomb has been demonstrated.
Technical Paper

High Temperature Compressive Strength of Extruded Cordierite Ceramic Substrates

1995-02-01
950787
High temperature modulus of rupture (MOR) data, published previously, show that the ceramic catalyst supports get stronger with temperature due to the absence of water vapor and closure of microcracks which would otherwise act as stress concentrators [1, 2 and 3]*. The increased MOR value is partially responsible for the excellent durability of ceramic catalyst supports at high temperature. In this paper, we will present the compressive strength data of ceramic substrates at high temperature, namely the crush strength along B-axis and biaxial compressive strength of the whole substrate. Since the honeycomb strength is directly related to that of the individual cell wall, the compressive strength should also increase with temperature similar to the modulus of rupture. Accordingly, the ceramic substrates are capable of supporting higher mounting pressures exerted by the intumescent mat at high temperature [4].
Technical Paper

Design Considerations for a Ceramic Preconverter System

1994-03-01
940744
The preconverter is an essential element of exhaust gas treatment to help meet the tighter emission standards of TLEV and LEV levels. Its design must be chosen so as to meet the simultaneous requirements of compactness, faster light-off, low back pressure, high temperature durability and low cost. This paper presents design options for a ceramic substrate and durable package which lead to an optimum and cost-effective preconverter system. Preliminary data for high temperature physical durability of selected converter systems are presented. Performance parameters for light-off activity and back pressure are also computed and compared with those of standard substrates used in underbody application. Laboratory tests comprising of axial push-out test, high temperature vibration test, exhaust gas simulation test and the engine dynamometer test demonstrate the viability of ceramic preconverters for automotive application.
Technical Paper

Optimization of Extruded Electrically Heated Catalysts

1994-03-01
940468
Low mass extruded electrically heated catalysts (EHC) followed directly by light-off and main converters resulted in non-methane hydrocarbon emissions (NMHC) between .020 and .023 g/mi at power levels as low as 1 kw and energy levels as low as 4 whr. These results were achieved on a 1993, 2.2 liter vehicle. The success of this system is due to rapid heat up of the catalyzed surface areas of both the heater and light-off converter. The energy added to the exhaust from both the heater and the light-off is then efficiently transferred to the main converter. In addition, the impact of power and energy on NMHC levels was determined. The Ultra-Low Emissions Vehicle (ULEV) standard was also achieved with uncatalyzed heaters and on a 1990, 3.8 L vehicle. The new California Low Emission Vehicle (LEV) and Ultra Low Emission Vehicle (ULEV) standards require a significant reduction in tail pipe emissions compared to current standards.
Technical Paper

Development of a Diesel Particulate Filter Composition and Its Effect on Thermal Durability and Filtration Performance

1994-03-01
940235
This paper details the development of the EX-80 composition, a new cordierite material for use as a diesel particulate filter (DPF), that was developed based on the following objectives; (1) improved thermal durability, (2) high filtration efficiency and (3) low pressure drop. The achievement of these goals was demonstrated through engine testing, stress modeling, and other evaluations. EX-80 has a low coefficient of thermal expansion (CTE) averaging less than 4x10-7°C-1 (25°C-800°C), the Modulus of Rupture (MOR) averages greater than 350 psi and the Modulus of Elasticity (MOE) averages less than 0.8 x 106 psi. The improvement of these three properties has resulted in improved thermal durability for EX-80 as compared to the current Corning DPF compositions (EX-47, EX-54 and EX-66). The new cordierite composition has been designed to achieve a low pressure drop as a function of soot loading (0.30 inHg/gm of soot collected), coupled with high efficiency, averaging greater than 90%.
Technical Paper

Effect of Contour, Size and Cell Structure on Compressive Strength of Porous Cordierite Ceramic Substrates

1993-10-01
932663
Since their introduction to automotive industry in 1975, ceramic substrates have successfully met the strength requirements for canning, engine and chassis vibrations, and thermal shock. This paper will focus on canning loads and techniques, and how they influence the stress distribution in ceramic substrates. The strength data, most relevant to canning stresses, will be presented for porous cordierite ceramic substrates as function of their contour, size and cell structure. Recent improvements in measuring the biaxial compressive strength will also be reviewed.
Technical Paper

Durable Packaging Design for Cordierite Ceramic Catalysts for Motorcycle Application

1993-03-01
930161
The motorcycle emissions regulations for both two-stroke and four-stroke engines, which are receiving worldwide attention, will go into effect in the very near future. To meet these regulations, the motorcycles will require a catalyst in conjunction with the muffler due to space limitations. The combination of high engine speeds, high vibrational acceleration, high HC and CO emissions, high oxidation exotherms, and stringent durability requirements, points to cordierite ceramic substrate as an ideal catalyst support. However, as an integral unit within the muffler, its packaging design must be capable of withstanding isothermal operating conditions which may exceed the upper intumescent temperature limit of the ceramic mat. This paper describes a durable packaging design for the ceramic catalyst which employs a hybrid ceramic mat, special end rings and gaskets, and high strength stainless steel can.
Technical Paper

Measurement of Biaxial Compressive Strength of Cordierite Ceramic Honeycombs

1993-03-01
930165
The stringent durability requirements approaching 100,000 vehicle miles for automotive substrates and 290,000 vehicle miles for large frontal area diesel substrates for 1994+ model year vehicles call for advanced packaging designs with thick ceramic mats and high mount densities. The latter result in high mounting pressure on the substrate and enhance its mechanical integrity against engine vibrations, road shocks and back pressure forces. A novel measurement technique which applies a uniform biaxial compressive load on the lateral surface of ceramic substrates, thereby simulating canning loads, is described. The biaxial compressive strength data obtained in this manner help determine the maximum mounting pressure and mat density for a durable packaging design. The biaxial compressive strength data for both round and non round substrates with small and large frontal area are presented.
Technical Paper

Reduced Energy and Power Consumption for Electrically Heated Extruded Metal Converters

1993-03-01
930383
Improved designs of extruded metal electrically heated catalysts (EHC) in combination with a traditional converter achieved the California ultra-low emission vehicle (ULEV) standard utilizing 50% less electrical energy than previous prototypes. This energy reduction is largely achieved by reducing the mass of the EHC. In addition to energy reduction, the battery voltage is reduced from 24 volts to 12 volts, and the power is reduced from 12 kilowatts to 3 kilowatts. Also discussed is the impact EHC mass, EHC catalytic activity, and no EHC preheating has on non-methane hydrocarbon emissions, energy requirements, and power requirements.
Technical Paper

Size Effect on the Strength of Ceramic Catalyst Supports

1992-10-01
922333
The typical ceramic catalyst support for automotive application has a total volume of 1640 cm3. Approximately 10% of this volume is subjected to tensile thermal stresses due to a radial temperature gradient in service [1]*. These stresses are kept below 50% of the substrate strength to minimize fatigue degradation and to ensure long-term durability [2]. However, the tensile strength measurements are carried out in 4-point bending using 2.5 cm wide x 1.2 cm thick x 10 cm long modulus of rupture bars in which the specimen volume subjected to tensile stress is merely 3.2 cm3 or 0.2% of the total substrate volume [3]. Thus, a large specimen population is often necessary (50 specimens or more) to obtain the strength distribution representative of full substrate. This is particularly true for large frontal area substrates for diesel catalyst supports with an order of magnitude larger stressed volume. In this paper, the modulus of rupture data are obtained as function of specimen size.
Technical Paper

Thermal Durability of a Ceramic Wall-Flow Diesel Filter for Light Duty Vehicles

1992-02-01
920143
The thermal durability of a large frontal area cordierite ceramic wall-flow filter for light-duty diesel engine is examined under various regeneration conditions. The radial temperature distribution during burner regeneration, obtained by eight different thermocouples at six different axial sections of a 75″ diameter x 8″ long filter, is used together with physical properties of the filter to compute thermal stresses via finite element analysis. The stress-time history of the filter is then compared with the strength and fatigue characteristics of extruded cordierite ceramic monolith. The successful performance of the filter over as many as 1000 regenerations is attributed to three important design parameters, namely unique filter properties, controlled regeneration conditions, and optimum packaging design. The latter induces significant radial and axial compression in the filter thereby enhancing its strength and reducing the operating stresses.
X